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We find, however, that the expressions given in /2/ for the characteristic quantities 

do not satisfy Eqs.(A.2). Therefore the expressions given for the coefficients of resistance 
of a spherical particle are incorrect. 

The error in /2/ is caused by the fact that instead of Eq.(A.2) theauthor used 

PP’=V.f_E’ ’ 1 * , 3 1s (A.@ 

which were obtained as follows. In order for the parr (reis, ’ p,‘i to be a solution of (A-2), it 
is sufficient for that pair to be a solution of the equation V~(-_GrmP:+V,V~s'+V,V,,')~T, or 
in expanded form, to 

i=m=l, - 61,V,P,'f V,V,I',,' -tVIVIFl; =o (A.6) 
j=m=Z, - q,v,&p, f v~v*I'~&'+ v,v,v,; = 0 
j=?na~, - 6,,v,P;+ v,v,V,s'+ vIG,V,'=@ 

j= 1, m=2, - BI,VIP,'+VrP,l'l; + V,vlv,'=' 
j= 1, m=3, - 6[*v,P,' _tV,V,V**'-t- v2qlV,; =o 

j=2, m=2, - ~,,v,P,’ + V,V,V~~J + vlv,v,; = 0 etc .I 

In /2/ the first three equations of (A.6) were combined to obtain, naturally, (A.5), and 
the remaining equations of (A.6) were neglected. The present discussion shows, however, that 
the system (A.3), (A.51 is not equivalent to the system (A-2), (A.3). 

We note that in the special case of isotropic viscosity 

'l(jrm='l t6$j~+ '$mSj[) 

the relations (A.l) become Vi = Vi,'u,, p = P,'u,q, equations (A.2) reduce to Eqs.(A.5) and the 
problem, as well as the method of solving it in /2/, become identical with the results in /4/. 
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ON THE STABILITY OF A VAPOUR-LIQUID MEDIUB CONTAINING BUBBLES* 

V.SH. SHAGAPOV 

A problem of the stability of a vapour-liquid medium containing bubbles is 
investigated. It is shown that since the surface tension and phase 
transitions act simultaneously, a range of values of the parameters of the 
vapour-liquid and vapour-gas-liquid media containing bubbles exists, for 
which the equilibrium state is unstable. The effect of various parameters 
of the two-phase medium, such as the volume content of the bubbles, the 
mass content of the gas and the degree of dispersion of the medium, on 
the increment characterizing the rate of development of the instability, 
is analysed. 

1. Fundamental equations. Let us consider the propagation of small perturbations 
through a polydisperse mixture of liquid and bubbles of m-i kinds, under the usual assump- 
tions made for two-phase media. Moreover, we shall assume that the gaseous phase consists 
of the vapour from the liquid phase, and some "inert" gas which takes no part in the process 

*Prikl.Maaten.MeJcban.,50,3, 516-521,1986. 
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of mass transfer between the phases. The phase velocities are the same. Then the system of 
equations of the mass, the number of bubbles and the momentum for one-dimensional motion, has 
the following form in the linear approximation: 

The indices i= 1 and t= 2,...,m refer to the parameters of the liquid and gas respectively 
in bubbles of the i-th kind, pi,pio,v,pi,ni,a are the perturbations in the density, velocity, 
pressure, number of bubbles per unit volume of the mixture and the radius of the bubbles, and 

Iit ii are the mass transfer intensities between the phases per unit volume of the mixture and 
unit area of the interphase boundary. The parameters corresponding to the unperturbed state, 
have an additional zero subscript. 

In order to take into account the heat and mass transfer between the phases, we will write 
the equation of heat conduction inside and outside the bubbles, and the diffusion equation 
inside the bubble, as 

Here r is the microcoordinate (the disthnce from the bubble centre), T',g' isthetemperature 
and mass vapour content distribution, Q,c~.E~ is the specific heat capacity of the liquid and 
of the mixture in bubbles at constant pressure and volume respectively, B is the gas constant, 
li is the thermal conductivity of the phases, and Xi is the diffusion coefficient; the primes 
denote the microparameters (i.e. the parameters depending on r). 

We write the equations of state in the form 

PL" = Pro"* pi= pii+pii = (p~'E"~p~'ff~) Tf = pp’BiT(, i= 2, . . ..m (1.3) 

where the subscripts u and g refer to the vapour and the gas within the bubbles. 
The equation of oscillatory motion, ignoring the compression of the bubbles, will be 

written in the form 

Qjml,/~l + 4V1~,i/a,0 = (pi -PI+ 2a/ai)/pJ (1.4) 

where (wli, 'D, are the velocities of the oscillatory motion of the liquid and gas at the inter- 
phase surface, (I is the surface tension and V, is the kinematic viscosity of the liquid. 

We will specify the following conditions at the surface of separationofthephases (r= ai,): 

f3T,,’ aT.’ 
T,,’ = Ti’ = T,, L1--- - x. L = j,l 

dr I ar G.5) 

where (1 is the latent heat of vapourisation. Moreover we have 

agt/ar =I 0, aTi'/dr = 0 (r = 0). Tli' = TO (r = m) 0.3) 
We will write the Clausius-Clapeyron equation for the values of the parameters at the 

boundary of separation of the phases, for states distant from the critical states as 

‘Pmil’T, = P,+lT,, 

In the course of solving the problems it is convenient to use the relation for pt obtained 
from the equation of heat conduction inside the bubbles, under the assumption that the condition 
of uniform pressure /l/ holds 

BPi 3 
at"--7 to ViPio'Ui-~~~(B*--Bg)'~xi [ 

ag; 
( 1 dr a@- (4.7) 
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We will seek the solution for the system in question in the form p, ti, a, w--exp (iKz+- w&j, 

T’= T(r)cxp(iKsf ot), g’= g(r)exp(~Ks-I_ ot) where K is the wave number and o is the complex 
frequency. Assuming that the effect of radial inertia and viscosity can be neglected as 
compared with the effect of the lack of thermal equilibrium, i.e. assuming that the extent 
of the instability is determined by the heat and mass transfer processes, we obtain the follow- 
ing dispersion equation: 

(1.8) 

Yp @iI YiB 
1 

-1 

(I - gig)) Pi (I + Yi) 
n (5) m 3 (z cth z - 1) t-9, xi = (oa~o”ixy’)“’ 

vi = (oaioyxyp ( zi = (w~“*iq”~, X$T) = h~/(P~&) 

xfiT) = ~~/(pi~~ci~), Hvi = Q’Bi,, Hgi = B.&,, pi,, = PIO + 2a/~<. 

&=3(Yi-1)H,+q*)a~ 
IO %p 

gia=[*+~(~-i)]-l 

2. A vapour-liquid medium (~~,=i). In the present case the equilibrium mixture will 
always be monodisperse and relation (1.8) will take the form 

The function f(m) satisfies on the positive semi-axes the conditions f'(o)>O, f to)= 

-Z<O; f(w)--ta3 as o-b+oo. Therefore Eq.(2.1) has a unique positive root. Using the argument 
principle /2/ we can show that there are no other solutions in the complex right half-plane. 

We will show that in the left half-plane Eq.(2.1) has complex conjugate roots correspond- 
ing to two running decaying waves moving in opposite directions. To do this, we take in the 
left upper quadrant the contour shown in Fig.la. Introducing the parameter ~a,%,= -9 we 
have, on the segment NW, 

Therefore on the segment NW fm(&>O and the contour changes its shape to the one shown 
in Fig.lb. Hence the function f(o) has a single root within the region bounded by this 
contour, By virtue of the properties of f(w), the complex conjugate point will also be a root 
of (2.1). 

Fig.1 Fig. 2 

An analysis of (2.1) shows that when the wave number I( varies from zero to infinity, the 
increment 0 increases monotonically from zero to some maximum value w,, and 

o&P(T) =4[(1-+ 4(#?-'- 4)/&l - 11 , oW = qT)tOO” (2.2) 

Note that the following physical meaning can be assigned to the parameter y: it represents 
the ratio of the bubble radiustothe liquid layer thickness near the interphase surface where 
the temperature fluctuations mostly occur. Let p<l. Then, solving Eq. (2.1) for the 
increment, we have 



RW [( 40 ‘2 ‘I. 
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(2.3) 

and this yields 

mzKdi/r, K’ 4 Kwa = 4o.‘X/d’ 

0 N Q,, (1 - o,*X/(K’d’)), K’> K,’ (61, = 0.x) 

The assumptions used in deriving (2.3) imply, that (BZ)'Z~~. Then we obtain the following 
expression for the bubble radius: 

lay* s Q, "r = 2@/(3yp*o) (2.4) 

When PIO= iv andiOePa, forawater vapour-watermixture, forexample, wehave.a.= IO-' and 4.5.iO+m. 
Tnthe analysisofthe stabilitythequantity Q), appearstobethemostimportant. Forthepressure 
valuesgivenaboveandfor-a,= lo-' m we have, according to (2.2),0,=50 and 0.3sec-l, and for a,,= 15-*m 

wehave,o, =0.2.10-l and0.3.10-s.Thusthewatervapour-watermixturesare stronglyunstable wheno,<iO+ m. 
The boundary condition (1.6) for TI' expressing the constancy of the temperature away from 

the bubble (the condition that the cell is isothermal /l/) is adopted in some cases when the 
temperature fluctuations in the fluid initiated by the radial motions of the bubbles are 
smaller than the mean.distance separating the bubbles (g(A -i).>i, A ==--'*). When y(A-1)@1, 
the above boundary condition must be replaced by the condition of adiabaticity of the cell 

aT,*lar = 0 (r = (31)c& _'I.) 

where o,,~,-'~~ is the radius of the spherical cell, and in place of (2.1) we obtain 

3spg(5am[i - M’ya (4 - I)'])-'+ (o/(Kd))‘- Z = 0 (2.5) 
M = (4 - i) (543 + 64’ + 34 + 1)/[15 (4s - I)] 

The above equation has a positive solution if aad%, < PI3 I otherwise it has no solutions 
in the right half-plane and the mixture is therefore stable. The dependence of the increment 
on the wave number is the same as before. We see from the, relation M(al,) shown in Fig.2 
that within the framework of the assumptions used in deriving (2.5), we can assume that 
My'(A - l)S<l when allO 3 10". Then, solving Eq.(2.5) for the increment, we obtain 

3 (Kd)’ M (4 - 1)’ Q,, 4 owl 0% ‘I. O=T &‘) ho I+~_-% 
(Kd)* M(A--i)r,, -' > 1 (2.6) 

[M(A - 1)‘]--1 

The above solution satisfies the conditions used in deriving it, provided that @aJ(3u,,)-- 
14 I. .When plO=UY and lo6 Pa and ,a,=iO-* m, we have @z = 0.105;0.0135, and we can therefore 
use the solution (2.6) forthevolume content of the bubbles close to the values ato = 0.35.1~1; 
0.45.1~*. 

Let us consider (2.1) for ysi. Then, remembering that we usually have p&i, we obtain 

(1 + p/y)-'< (ai(K - I: = 0 

This yields the following expression for the maximum value of-the increment: 

(O.&Jr =[5'/(! - X)]' 

The solution holds for sufficiently finely dispersed media such that ~<a., where a, is 
the characteristic radius given by (2.4). 

To explain the mechanism of the instability under discussion, we will consider a vapour- 
liquid mixture containing bubbles, in the isothermal equilibrium approximation (T,‘= T,‘= To= 

const), i.e. we will consider a hypothetical mixture for which the thermal conductivities are 
infinite. Then the pressure within the liquid and the bubbles will be connected by the 
relation ,Pn= PI +20/a. Since pa = ps (TA (PS (T,) is the saturation pressure at the temperature 

T,), it follows that the vapour pressure within the bubbles is constant in this approximation. 
Consequently the pressure perturbations 6pl and the perturbations in the bubble radius are 
connected by the relation 

8p N 8p, = 2ua,-%ll 42.7) 

Replacing 80 by the mean density perturbation of the medium and neglecting the compress- 
ibility of the liquid, we obtain Sp= --dr~bp in place of (2.7). Thus when the "perfect" 
medium in question is compressed (8p>O), it responds by a drop in pressure and is therefore 
unstable. 

On the other hand, by replacing the isothermal condition by the cell adiabaticity condition, 
we obtain a narrowing of the domain of instability. For such an equilibrium mixture the 
relation connecting the increment with the wave number K is linear: o= d&fEK. Taking account 
of the lack of equilibrium in the heat and mass transfer processes, radial inertia and other 
effects, only perturbs thelinear form of this relation without affecting the domain of 
instability. 



3. A vapour-gas-liquid mixture. Using the assumptions and simplifications noted above, 
above, we can reduce the dispersion equation in the monodisperse approximation to the form 

(3.1, 

We can show, as before, that the above equation has a positive root, provided that 

go>g,. Y* = m/(i+q% m= (a+ 3p1aao/(2J))BgS;' (3.Z) 

If on the other hand the condition is rewritten in terms of the partial vapour pressure 
within the bubbles, we have 

PM = Ps (To) > Pto + 4s1(3%J (3.3) 

Let us consider the asympfotic form of Eq.(3.1) when Y&1. Then since we usually have 
Y.l(r)X_I<i, s(+-'- 1, the conditions z,z<I will also hold. Using the following expansion for 
the transcendental expression: 

n (5) = 1 + 0 (ZY15) 

and neglecting yz/B as compared with y, we can write Eq.(3.1) in the form 

Y%M 4 (~/~~))Z i- (* - &I) Hgr'-- 2 = 9 (3.4) 

from which we have 

0, = w*(kl - PI0 - 4om%MYP,a&) (3.5) 

The above solution satisfies the conditions under which it was obtained, for sufficiently 
large bubbles satisfying condition (2.7). 

The solution satisfying the conditions .Y>i and at the same time I,z<I, is al.40 of 

interest. Inthiscase wehave 
%=W'T'tS(PoO- p,o - ~3/(3QO))~(~~P~O ff - 2)) (3.6) 

When water is mixed with water vapour-air bubbles, g,,=i@,io5,1@ Pa and ao= 10-e m, we have 
g-=0.94; 0.994;0.9994 for the critical concentration of the vapour-air mixture. Thus although, 
as shown in Sect.2, the bubble mixtures are strongly unstable when ~,,410-~ m, adding a negligible 

amount of gas to the vapour bubbles stabilizes them. 

% ./ 
ti - Bo) II8Y-L+ 3&%GQ%o)> I 

.i' 

We see that the correction on account of the condition of 
adiabaticity becomes substantial if ~&~,~(3a,,)-l. 

./ 
Analysing the solutions (3.5) and (3.6) obtained for r,z<i, we find 

/ 
/' 

)/-- 
that they satisfy this condition over a fairly wide range of variations 

/ of the parameters of the vapour-gas-liquid mixtures containing bubbles. 
/ We note that the diffusion coefficient andthermalconductivityofthe 

I vapour-gas mixture do not appear in these solutions, and therefore 
the pace of instability (the value of o) is limited by the thermal 

Fig.3 resistance of the liquid. 
Let us consider a mixture containing bubbles of two different sizes, assuming that the 

larger bubbles (radii azo) contain vapour only. Then, when Y,,Ya<l, we can write (1.8) in 
the form 

w As before, replacing the isothermal condition by the cell 

j 

adiabaticity condition we can sharpen the condition of stability, 
K --.-,- 

1' ./ 
which has the form 

(Qo)* + [&~(YL"@? - xX)]'+ [~~a(~8g~/~~ - %i+ (i -go)Hg/ys)l"= 0 (3.7) 
d; = Yi~~~/(P,~~~~~), Ii = ~6/(3~~p~~), i = 2,3 

Analysing (3.7) we find that two types of dependence of the increment on the wave number 
are possible. If the vapour mass content satisfies a condition analogous to (3.2) (where the 
parameter a, in the expression for 'p is replaced by a,,), we have two values of the increment 
for every value of the wave number. If the mass content of the gas is sufficiently large 

(l&X< PC)? the relation becomes single-valued and, as the wave number varies from zero to 
infinity, the increment increases from some o. to 0, where w, isaroot of the equation 

y (ePil% - I,) + &? (Ys%&* - I, + ii - go) H,/Y,) = 9 
Fig.3 shows schematically the dependence of the increment on the wave number, The solid 

line refers to a liquid containing vapour bubbles (% = O), the dashed line to g,>g, and the 
dot-dash line to g, <g.. 

Eq.(3.7) can be generalized to the case of a continuous bubble-size distribution. Let us 
introduce the bubble-size distribution function f(a) such, that the volume content of the 
bubbles da whose radii vary from a0 to as+&,,, is determined from the relation da= (f-c+,) 

f w &a. Then substituting (xi0 = (l - alo) f (a& Aa+0 into (l.B), passing to the limit as AaiC?-J@, 
using the simplification made in deriving (3.7) and assuming that 2o/a,<p,,, I- g,&:l, we obtain 

(3.9) 
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The above equation for o has no positive roots when puo<plo, nor when p,,o>plo provided 
that the bubble radii satisfy the condition 

4 
ao< 7-,J* Q= MP,- Pm) (3.9) 

Therefore the mixture will be stable under these conditions also. The largest radius of 
the equilibrium bubbles in the case of a superheated liquid (poo>pn,) is found from the 
relation 0,=20, 

Thus the vapour-gas-liquid mixture containing bubbles, underheated with respect to the 
saturation pressure determined at the flat boundary of separation of the phases, is always 
stable. The superheated mixture is stable if the bubbles are sufficiently small and satisfy 
the condition (3.9). 

Therefore, the simultaneous action of capillary phenomena and phase transitions may lead 
to violation of the stability of vapour-liquid mixtures containing bubbles, and the pace of 
the instability in question will basically be limited by the temperature imbalance in the 
liquid. 
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A GENERAL SOLUTION OF THE STATIC PROBLEM OF THE THEORY 
OF ASYMMETRICAL ELASTICITY* 

V.I. OLIFER 

A general solution of the homogeneous static relations of the theory of 
asymmetric elasticity is constructed. The passage to the solution of the 
classical (symmetric) theory of elasticity is shown, and the form of the 
general solution for the plane problem is derived. 

Certain modifications to the general solution of the equations of 
equilibrium in the theory of elasticity serve as a basis for formulating 
various different expressions for the Castigliano functional in the stress 
functions /l/. 

1. When the mass forces and moments are omitted, the static relations of the theory of 
asymmetric elasticity have the form /2/ 

V.T=O, V.B4-C..T=O (1.1) 

where T,M are the asymmetric stress and couple stress tensors, respectively, 8 is the Levi- 
Civita tensor and V is the Hamiltonian operator. 

Consider the first relation of (1.1). Weknow/2/ that a tensor whose divergence is equal 
to zero can be represented in terms of the curl of another tensor. We therefore write (P is 
an.arbitrary differentiable second-rank tensor) 

T=VxP (1.2) 
Relation (1.2) satisfies the first relation of (1.1) identically. Substituting (1.2) into 

the second relation of (1.1) and taking into account the.validity of the transformation 

e..vx P=V.II..P-P.V 

we can write the second relation of (1.1) in the form 

V.(M+P=-II..P)=O 

where I is a unit second-rank tensor and T denotes transposition. 
(1.3) 
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